Not yet retired from research
Friday, April 19th, 2019Last night, two papers appeared on the quantum physics arXiv that my coauthors and I have been working on for more than a year, and that I’m pretty happy about.
The first paper, with Guy Rothblum, is Gentle Measurement of Quantum States and Differential Privacy (85 pages, to appear in STOC’2019). This is Guy’s first paper that has anything to do with quantum, and also my first paper that has anything to do with privacy. (What do I care about privacy? I just share everything on this blog…) The paper has its origin when I gave a talk at the Weizmann Institute about “shadow tomography” (a task where you have to measure quantum states very carefully to avoid destroying them), and Guy was in the audience, and he got all excited that the techniques sounded just like what they use to ensure privacy in data-mining, and I figured it was just some wacky coincidence and brushed him off, but he persisted, and it turned out that he was 100% right, and our two fields were often studying the same problems from different angles and we could prove it. Anyway, here’s the abstract:
In differential privacy (DP), we want to query a database about n users, in a way that “leaks at most ε about any individual user,” even conditioned on any outcome of the query. Meanwhile, in gentle measurement, we want to measure n quantum states, in a way that “damages the states by at most α,” even conditioned on any outcome of the measurement. In both cases, we can achieve the goal by techniques like deliberately adding noise to the outcome before returning it. This paper proves a new and general connection between the two subjects. Specifically, we show that on products of n quantum states, any measurement that is α-gentle for small α is also O(α)-DP, and any product measurement that is ε-DP is also O(ε√n)-gentle.Illustrating the power of this connection, we apply it to the recently studied problem of shadow tomography. Given an unknown d-dimensional quantum state ρ, as well as known two-outcome measurements E1,…,Em, shadow tomography asks us to estimate Pr[Ei accepts ρ], for every i∈[m], by measuring few copies of ρ. Using our connection theorem, together with a quantum analog of the so-called private multiplicative weights algorithm of Hardt and Rothblum, we give a protocol to solve this problem using O((log m)2(log d)2) copies of ρ, compared to Aaronson’s previous bound of ~O((log m)4(log d)). Our protocol has the advantages of being online (that is, the Ei‘s are processed one at a time), gentle, and conceptually simple.
Other applications of our connection include new lower bounds for shadow tomography from lower bounds on DP, and a result on the safe use of estimation algorithms as subroutines inside larger quantum algorithms.
The second paper, with Robin Kothari, UT Austin PhD student William Kretschmer, and Justin Thaler, is Quantum Lower Bounds for Approximate Counting via Laurent Polynomials. Here’s the abstract:
Given only a membership oracle for S, it is well-known that approximate counting takes Θ(√(N/|S|)) quantum queries. But what if a quantum algorithm is also given “QSamples”—i.e., copies of the state |S〉=Σi∈S|i〉—or even the ability to apply reflections about |S〉? Our first main result is that, even then, the algorithm needs either Θ(√(N/|S|)) queries or else Θ(min{|S|1/3,√(N/|S|)}) reflections or samples. We also give matching upper bounds.We prove the lower bound using a novel generalization of the polynomial method of Beals et al. to Laurent polynomials, which can have negative exponents. We lower-bound Laurent polynomial degree using two methods: a new “explosion argument” that pits the positive- and negative-degree parts of the polynomial against each other, and a new formulation of the dual polynomials method.
Our second main result rules out the possibility of a black-box Quantum Merlin-Arthur (or QMA) protocol for proving that a set is large. More precisely, we show that, even if Arthur can make T quantum queries to the set S⊆[N], and also receives an m-qubit quantum witness from Merlin in support of S being large, we have Tm=Ω(min{|S|,√(N/|S|)}). This resolves the open problem of giving an oracle separation between SBP, the complexity class that captures approximate counting, and QMA.
Note that QMA is “stronger” than the queries+QSamples model in that Merlin’s witness can be anything, rather than just the specific state |S〉, but also “weaker” in that Merlin’s witness cannot be trusted. Intriguingly, Laurent polynomials also play a crucial role in our QMA lower bound, but in a completely different manner than in the queries+QSamples lower bound. This suggests that the “Laurent polynomial method” might be broadly useful in complexity theory.
I need to get ready for our family’s Seder now, but after that, I’m happy to answer any questions about either of these papers in the comments.
Meantime, the biggest breakthrough in quantum complexity theory of the past month isn’t either of the above: it’s the paper by Anand Natarajan and John Wright showing that MIP*, or multi-prover interactive proof systems with entangled provers, contains NEEXP, or nondeterministic doubly-exponential time (!!). I’ll try to blog about this later, but if you can’t wait, check out this excellent post by Thomas Vidick.