Archive for the ‘Nerd Interest’ Category

Will UT Austin and Texas A&M survive beyond this week?

Monday, April 17th, 2023

Update (April 20): Alas, the Texas Senate has approved SB 18. The survival of higher education in Texas now hinges on this bill not being taken up or passed in the House, or not being enforced as written (e.g., because UT’s existing post-tenure review system is judged to satisfy it).


This week, the Texas Senate will take up SB 18, a bill to ban the granting of tenure at all public universities in Texas, including UT Austin and Texas A&M. (Those of us who have tenure would retain it, for what little that’s worth.)

[Update: I’ve learned that, even if this bill passes the Senate, there’s a good chance that it will get watered down or die in the House, or found to be satisfied by UT’s existing system of post-tenure review. That’s the only reason why people in the know aren’t panicking even more than they are.]

I find it hard to imagine that SB 18 will actually pass both houses and be enforced as written, simply because it’s obvious that if it did, it would be the end of UT Austin and Texas A&M as leading research universities. More precisely, it would be the immediate end of our ability to recruit competitively, and the slightly slower end of our competitiveness period, as faculty with options moved elsewhere. This is so because of the economics of faculty hiring. Particularly in STEM fields like computer science, those who become professors typically forgo vastly higher salaries in industry, not to mention equity in startup companies and so on. Why would we do such a nutty thing? Because we like a certain lifestyle. We’re willing to move several economic strata downward in return for jobs where (in principle) no one can fire us without cause, or tell us what we’re allowed to say or publish. The evidence from industry labs (Google, Facebook, Microsoft, etc.) suggests that, in competitive fields, for Texas to attract and retain top faculty without tenure would require paying them hundreds of thousands more per year. In that sense, tenure is a bargain for universities and the state. Of course the situation is a bit different for art history and English literature, but in any case SB 18 makes no distinction between fields.

The Texas Senate is considering two other bills this week: SB 17, which would ban all DEI (Diversity, Equity, and Inclusion) programs, offices, and practices at public universities, and SB 16, which would require the firing of any professor if they “compel or attempt to compel a student … to adopt a belief that any race, sex, or ethnicity or social, political, or religious belief is inherently superior to any other race, sex, ethnicity, or belief.” (The language here seems sloppy to me: is liberal democracy “inherently superior” to Nazism? Would teaching students about the horrors of Nazism count as “attempting to compel them” to accept this superiority?)

Taken together, it’s clear that the goal is to hit back hard against “wokeness” in academia, and thereby satisfy the Republican base.

Here’s the thing: there really is an illiberal ideology that’s taken over parts of academia (not all of it)—an ideology that Tim Urban, in his wonderful recent book What’s Our Problem?, usefully terms “Social Justice Fundamentalism” or SJF, to distinguish it sharply from “Liberal Social Justice,” the ideology of (for example) the Civil Rights movement. Now, I’m on record as not a fan of the SJF ideology, to put it mildly, and the SJF ideology is on record as not a fan of me. In 2015, I was infamously dragged through the mud of Salon, The New Republic, Raw Story, and many other magazines and websites for a single blog comment criticizing a form of feminism that had contributed to making my life miserable, even while I proudly called myself a liberal feminist (and still do). More recently, wokesters have written to my department chair trying to get me disciplined or fired, for everything from my use of the now-verboten term “quantum supremacy,” to a reference to female breasts in a poem I wrote as a student that was still on my homepage. (These attempts thankfully went nowhere. Notwithstanding what you read, sanity retains many strongholds in academia.)

Anyway, despite all of this, the Texas Republicans have somehow succeeded in making me more afraid of them, purely on the level of professional survival, than I’ve ever been of the Social Justice Fundamentalists. In effect, the Republicans propose to solve the “problem of wokeness” by simply dropping thermonuclear weapons on all Texas public universities, thereby taking out me and my colleagues as collateral damage—regardless of our own views on wokeness or anything else, and regardless of what we’re doing for Texas’ scientific competitiveness.

I don’t expect that most of my readers, in or out of Texas, will need to be persuaded about any of this—nor am I expecting to change many minds on the other side. Mostly, I’m writing this post in the hope that some well-connected moderates here in Austin will link to it, and the post might thereby play a tiny role in helping Texas’ first-rate public universities live one more day. (And to any such moderates: yes, I’m happy to meet in person with you or your colleagues, if that would help!) Some posts are here on this blog for no better reason than, y’know, moral obligation.

An unexpected democracy slogan

Tuesday, March 28th, 2023

At least six readers have by now sent me the following photo, which was taken in Israel a couple nights ago during the historic street protests against Netanyahu’s attempted putsch:

(Update: The photo was also featured on Gil Kalai’s blog, and was credited there to Alon Rosen.)

This is surely the first time that “P=NP” has emerged as a viral rallying cry for the preservation of liberal democracy, even to whatever limited extent it has.

But what was the graffiti artist’s intended meaning? A few possibilities:

  1. The government has flouted so many rules of Israel’s social compact that our side needs to flout the rules too: shut down the universities, shut down the airport, block the roads, even assert that P=NP (!).
  2. As a protest movement up against overwhelming odds, we need to shoot for the possibly-impossible, like solving 3SAT in polynomial time.
  3. A shibboleth for scientific literate people following the news: “Israel is full of sane people who know what ‘P=NP’ means as you know what it means, are amused by its use as political graffiti as you’d be amused by it, and oppose Netanyahu’s putsch for the same reasons you’d oppose it.”
  4. No meaning, the artist was just amusing himself or herself.
  5. The artist reads Shtetl-Optimized and wanted effectively to force me to feature his or her work here.

Anyway, if the artist becomes aware of this post, he or she is warmly welcomed to clear things up for us.

And when this fight resumes after Passover, may those standing up for the checks and balances of a liberal-democratic society achieve … err … satisfaction, however exponentially unlikely it seems.

On overexcitable children

Friday, March 17th, 2023

Update (March 21): After ChatGPT got “only” a D on economist Bryan Caplan’s midterm exam, Bryan bet against any AI getting A’s on his exams before 2029. A mere three months later, GPT-4 has earned an A on the same exam (having been trained on data that ended before the exam was made public). Though not yet conceding the bet on a technicality, Bryan has publicly admitted that he was wrong, breaking a string of dozens of successful predictions on his part. As Bryan admirably writes: “when the answers change, I change my mind.” Or as he put it on Twitter:

AI enthusiasts have cried wolf for decades. GPT-4 is the wolf. I’ve seen it with my own eyes.

And now for my own prediction: this is how the adoption of post-GPT AI is going to go, one user at a time having the “holy shit” reaction about an AI’s performance on a task that they personally designed and care about—leaving, in the end, only a tiny core of hardened ideologues to explain to the rest of us why it’s all just a parrot trick and none of it counts or matters.

Another Update (March 22): Here’s Bill Gates:

In September, when I met with [OpenAI] again, I watched in awe as they asked GPT, their AI model, 60 multiple-choice questions from the AP Bio exam—and it got 59 of them right. Then it wrote outstanding answers to six open-ended questions from the exam. We had an outside expert score the test, and GPT got a 5—the highest possible score, and the equivalent to getting an A or A+ in a college-level biology course.

Once it had aced the test, we asked it a non-scientific question: “What do you say to a father with a sick child?” It wrote a thoughtful answer that was probably better than most of us in the room would have given. The whole experience was stunning.

I knew I had just seen the most important advance in technology since the graphical user interface.

Just another rube who’s been duped by Clever Hans.


Wilbur and Orville are circumnavigating the Ohio cornfield in their Flyer. Children from the nearby farms have run over to watch, point, and gawk. But their parents know better.

An amusing toy, nothing more. Any talk of these small, brittle, crash-prone devices ferrying passengers across continents is obvious moonshine. One doesn’t know whether to laugh or cry that anyone could be so gullible.

Or if they were useful, then mostly for espionage and dropping bombs. They’re a negative contribution to the world, made by autistic nerds heedless of the dangers.

Indeed, one shouldn’t even say that the toy flies: only that it seems-to-fly, or “flies.” The toy hasn’t even scratched the true mystery of how the birds do it, so much more gracefully and with less energy. It sidesteps the mystery. It’s a scientific dead-end.

Wilbur and Orville haven’t even released the details of the toy, for reasons of supposed “commercial secrecy.” Until they do, how could one possibly know what to make of it?

Wilbur and Orville are greedy, seeking only profit and acclaim. If these toys were to be created — and no one particularly asked for them! — then all of society should have had a stake in the endeavor.

Only the rich will have access to the toy. It will worsen inequality.

Hot-air balloons have existed for more than a century. Even if we restrict to heavier-than-air machines, Langley, Whitehead, and others built perfectly serviceable ones years ago. Or if they didn’t, they clearly could have. There’s nothing genuinely new here.

Anyway, the reasons for doubt are many, varied, and subtle. But the bottom line is that, if the children only understood what their parents did, they wouldn’t be running out to the cornfield to gawk like idiots.

WINNERS of the Scott Aaronson Grant for Advanced Precollege STEM Education!

Friday, November 18th, 2022

I’m thrilled to be able to interrupt your regular depressing programming for 100% happy news.

Some readers will remember that, back in September, I announced that an unnamed charitable foundation had asked my advice on how best to donate $250,000 for advanced precollege STEM education. So, just like the previous time I got such a request, from Jaan Tallinn’s Survival and Flourishing Fund, I decided to do a call for proposals on Shtetl-Optimized before passing along my recommendations.

I can now reveal that the generous foundation, this time around, was the Packard Foundation. Indeed, the idea and initial inquiries to me came directly from Dave Orr: the chair of the foundation, grandson of Hewlett-Packard cofounder David Packard, and (so I learned) longtime Shtetl-Optimized reader.

I can also now reveal the results. I was honored to get more than a dozen excellent applications. After carefully considering all of them, I passed along four finalists to the Packard Foundation, which preferred to award the entire allotment to a single program if possible. After more discussion and research, the Foundation then actually decided on two winners:

  • $225,000 for general support to PROMYS: the long-running, world-renowned summer math camp for high-school students, which (among other things) is in the process of launching a new branch in India. While I ended up at Canada/USA Mathcamp (which I supported in my first grant round) rather than PROMYS, I knew all about and admired PROMYS even back when I was the right age to attend it. I’m thrilled to be able to play a small role in its expansion.
  • $30,000 for general support to AddisCoder: the phenomenal program that introduces Ethiopian high-schoolers to programming and algorithms. AddisCoder was founded by UC Berkeley theoretical computer science professor and longtime friend-of-the-blog Jelani Nelson, and also received $30,000 in my first grant round. Jelani and his co-organizers will be pressing ahead with AddisCoder despite political conflict in Ethiopia including a recently-concluded civil war. I’m humbled if I can make even the tiniest difference.

Thanks so much to the Packard Foundation, and to Packard’s talented program officers, directors, and associates—especially Laura Sullivan, Jean Ries, and Prithi Trivedi—for their hard work to make this happen. Thanks so much also to everyone who applied. While I wish we could’ve funded everyone, I’ve learned a lot about programs to which I’d like to steer future support (other prospective benefactors: please email me!!), and to which I’d like to steer kids: my own, once they’re old enough, and other kids of my acquaintance.

I feel good that, in the tiny, underfunded world of accelerated STEM education, the $255,000 that Packard is donating will already make a difference. But of course, $255,000 is only a thousandth of $255 million, which is a thousandth of $255 billion. Perhaps I could earn the latter sort of sums, to donate to STEM education or any other cause, by (for example) starting my own cryptocurrency exchange. I hope my readers will forgive me for not having chosen that route, expected-utility-maximization arguments be damned.

Win a $250,000 Scott Aaronson Grant for Advanced Precollege STEM Education!

Thursday, September 1st, 2022

Back in January, you might recall, Skype cofounder Jaan Tallinn’s Survival and Flourishing Fund (SFF) was kind enough to earmark $200,000 for me to donate to any charitable organizations of my choice. So I posted a call for proposals on this blog. You “applied” to my “foundation” by simply sending me an email, or leaving a comment on this blog, with a link to your organization’s website and a 1-paragraph explanation of what you wanted the grant for, and then answering any followup questions that I had.

After receiving about 20 awesome proposals in diverse areas, in the end I decided to split the allotment among organizations around the world doing fantastic, badly-needed work in math and science enrichment at the precollege level. These included Canada/USA Mathcamp, AddisCoder, a magnet school in Maine, a math circle in Oregon, a math enrichment program in Ghana, and four others. I chose to focus on advanced precollege STEM education both because I have some actual knowledge and experience there, and because I wanted to make a strong statement about an underfunded cause close to my heart that’s recently suffered unjust attacks.

To quote the immortal Carl Sagan, from shortly before his death:

[C]hildren with special abilities and skills need to be nourished and encouraged. They are a national treasure. Challenging programs for the “gifted” are sometimes decried as “elitism.” Why aren’t intensive practice sessions for varsity football, baseball, and basketball players and interschool competition deemed elitism? After all, only the most gifted athletes participate. There is a self-defeating double standard at work here, nationwide.

Anyway, the thank-you notes from the programs I selected were some of the most gratifying emails I’ve ever received.

But wait, it gets better! After reading about the Scott Aaronson Speculation Grants on this blog, representatives from a large, reputable family foundation contacted me to say that they wanted to be involved too. This foundation, which wishes to remain anonymous at this stage although not to the potential grant recipient, intends to make a single US$250,000 grant in the area of advanced precollege STEM education. They wanted my advice on where their grant should go.

Of course, I could’ve simply picked one of the same wonderful organizations that SFF and I helped in the first round. On reflection, though, I decided that it would be more on the up-and-up to issue a fresh call for proposals.

So: do you run a registered 501(c)(3) nonprofit dedicated to advanced precollege STEM education? If so, email me or leave a comment here by Friday, September 9, telling me a bit about what your organization does and what more it could do with an extra $250K. Include a rough budget, if that will help convince me that you can actually make productive use of that amount, that it won’t just sit in your bank account. Organizations that received a Scott Aaronson Speculation Grant the last time are welcome to reapply; newcomers are also welcome.

I’ll pass up to three finalists along to the funder, which will then make a final decision as to the recipient. The funder will be directly in touch with the potential grantee(s) and will proceed with its intake, review and due diligence process.

We expect to be able to announce a recipient on or around October 24. Can’t wait to see what people come up with!

Busy Beaver Updates: Now Even Busier

Tuesday, August 30th, 2022

Way back in the covid-filled summer of 2020, I wrote a survey article about the ridiculously-rapidly-growing Busy Beaver function. My survey then expanded to nearly twice its original length, with the ideas, observations, and open problems of commenters on this blog. Ever since, I’ve felt a sort of duty to blog later developments in BusyBeaverology as well. It’s like, I’ve built my dam, I’ve built my lodge, I’m here in the pond to stay!

So without further ado:

  • This May, Pavel Kropitz found a machine demonstrating that $$ BB(6) \ge 10^{10^{10^{10^{10^{10^{10^{10^{10^{10^{10^{10^{10^{10^{10}}}}}}}}}}}}}} $$ (15 times)—thereby blasting through his own 2010 record, that BB(6)≥1036,534. Or, for those tuning in from home: Kropitz constructed a 6-state, 2-symbol, 1-tape Turing machine that runs for at least the above number of steps, when started on an initially blank tape, and then halt. The machine was analyzed and verified by Pascal Michel, the modern keeper of Busy Beaver lore. In my 2020 survey, I’d relayed an open problem posed by my then 7-year-old daughter Lily: namely, what’s the first n such that BB(n) exceeds A(n), the nth value of the Ackermann function? All that’s been proven is that this n is at least 5 and at most 18. Kropitz and Michel’s discovery doesn’t settle the question—titanic though it is, the new lower bound on BB(6) is still less than A(6) (!!)—but in light of this result, I now strongly conjecture that the crossover happens at either n=6 or n=7. Huge congratulations to Pavel and Pascal!
  • Tristan Stérin and Damien Woods wrote to tell me about a new collaborative initiative they’ve launched called BB Challenge. With the participation of other leading figures in the neither-large-nor-sprawling Busy Beaver world, Tristan and Damien are aiming, not only to pin down the value of BB(5)—proving or disproving the longstanding conjecture that BB(5)=47,176,870—but to do so in a formally verified way, with none of the old ambiguities about which Turing machines have or haven’t been satisfactorily analyzed. In my survey article, I’d passed along a claim that, of all the 5-state machines, only 25 remained to be analyzed, to understand whether or not they run forever—the “default guess” being that they all do, but that proving it for some of them might require fearsomely difficult number theory. With their more formal and cautious approach, Tristan and Damien still count 1.5 million (!) holdout machines, but they hope to cut down that number extremely rapidly. If you’re feeling yourself successfully nerd-sniped, please join the quest and help them out!

Steven Pinker and I debate AI scaling!

Monday, June 27th, 2022

Before June 2022 was the month of the possible start of the Second American Civil War, it was the month of a lively debate between Scott Alexander and Gary Marcus about the scaling of large language models, such as GPT-3.  Will GPT-n be able to do all the intellectual work that humans do, in the limit of large n?  If so, should we be impressed?  Terrified?  Should we dismiss these language models as mere “stochastic parrots”?

I was privileged to be part of various email exchanges about those same questions with Steven Pinker, Ernest Davis, Gary Marcus, Douglas Hofstadter, and Scott Alexander.  It’s fair to say that, overall, Pinker, Davis, Marcus, and Hofstadter were more impressed by GPT-3’s blunders, while we Scotts were more impressed by its abilities.  (On the other hand, Hofstadter, more so than Pinker, Davis, or Marcus, said that he’s terrified about how powerful GPT-like systems will become in the future.)

Anyway, at some point Pinker produced an essay setting out his thoughts, and asked whether “either of the Scotts” wanted to share it on our blogs.  Knowing an intellectual scoop when I see one, I answered that I’d be honored to host Steve’s essay—along with my response, along with Steve’s response to that.  To my delight, Steve immediately agreed.  Enjoy!  –SA


Steven Pinker’s Initial Salvo

Will future deep learning models with more parameters and trained on more examples avoid the silly blunders which Gary Marcus and Ernie Davis entrap GPT into making, and render their criticisms obsolete?  And if they keep exposing new blunders in new models, would this just be moving the goalposts?  Either way, what’s at stake?

It depends very much on the question.  There’s the cognitive science question of whether humans think and speak the way GPT-3 and other deep-learning neural network models do.  And there’s the engineering question of whether the way to develop better, humanlike AI is to upscale deep learning models (as opposed to incorporating different mechanisms, like a knowledge database and propositional reasoning).

The questions are, to be sure, related: If a model is incapable of duplicating a human feat like language understanding, it can’t be a good theory of how the human mind works.  Conversely, if a model flubs some task that humans can ace, perhaps it’s because it’s missing some mechanism that powers the human mind.  Still, they’re not the same question: As with airplanes and other machines, an artificial system can duplicate or exceed a natural one but work in a different way.

Apropos the scientific question, I don’t see the Marcus-Davis challenges as benchmarks or long bets that they have to rest their case on.  I see them as scientific probing of an empirical hypothesis, namely whether the human language capacity works like GPT-3.  Its failures of common sense are one form of evidence that the answer is “no,” but there are others—for example, that it needs to be trained on half a trillion words, or about 10,000 years of continuous speech, whereas human children get pretty good after 3 years.  Conversely, it needs no social and perceptual context to make sense of its training set, whereas children do (hearing children of deaf parents don’t learn spoken language from radio and TV).  Another diagnostic is that baby-talk is very different from the output of a partially trained GPT.  Also, humans can generalize their language skill to express their intentions across a wide range of social and environmental contexts, whereas GPT-3 is fundamentally a text extrapolator (a task, incidentally, which humans aren’t particularly good at).  There are surely other empirical probes, limited only by scientific imagination, and it doesn’t make sense in science to set up a single benchmark for an empirical question once and for all.  As we learn more about a phenomenon, and as new theories compete to explain it, we need to develop more sensitive instruments and more clever empirical tests.  That’s what I see Marcus and Davis as doing.

Regarding the second, engineering question of whether scaling up deep-learning models will “get us to Artificial General Intelligence”: I think the question is probably ill-conceived, because I think the concept of “general intelligence” is meaningless.  (I’m not referring to the psychometric variable g, also called “general intelligence,” namely the principal component of correlated variation across IQ subtests.  This is  a variable that aggregates many contributors to the brain’s efficiency such as cortical thickness and neural transmission speed, but it is not a mechanism (just as “horsepower” is a meaningful variable, but it doesn’t explain how cars move.)  I find most characterizations of AGI to be either circular (such as “smarter than humans in every way,” begging the question of what “smarter” means) or mystical—a kind of omniscient, omnipotent, and clairvoyant power to solve any problem.  No logician has ever outlined a normative model of what general intelligence would consist of, and even Turing swapped it out for the problem of fooling an observer, which spawned 70 years of unhelpful reminders of how easy it is to fool an observer.

If we do try to define “intelligence” in terms of mechanism rather than magic, it seems to me it would be something like “the ability to use information to attain a goal in an environment.”  (“Use information” is shorthand for performing computations that embody laws that govern the world, namely logic, cause and effect, and statistical regularities.  “Attain a goal” is shorthand for optimizing the attainment of multiple goals, since different goals trade off.)  Specifying the goal is critical to any definition of intelligence: a given strategy in basketball will be intelligent if you’re trying to win a game and stupid if you’re trying to throw it.  So is the environment: a given strategy can be smart under NBA rules and stupid under college rules.

Since a goal itself is neither intelligent or unintelligent (Hume and all that), but must be exogenously built into a system, and since no physical system has clairvoyance for all the laws of the world it inhabits down to the last butterfly wing-flap, this implies that there are as many intelligences as there are goals and environments.  There will be no omnipotent superintelligence or wonder algorithm (or singularity or AGI or existential threat or foom), just better and better gadgets.

In the case of humans, natural selection has built in multiple goals—comfort, pleasure, reputation, curiosity, power, status, the well-being of loved ones—which may trade off, and are sometimes randomized or inverted in game-theoretic paradoxical tactics.  Not only does all this make psychology hard, but it makes human intelligence a dubious benchmark for artificial systems.  Why would anyone want to emulate human intelligence in an artificial system (any more than a mechanical engineer would want to duplicate a human body, with all its fragility)?  Why not build the best possible autonomous vehicle, or language translator, or dishwasher-emptier, or baby-sitter, or protein-folding predictor?  And who cares whether the best autonomous vehicle driver would be, out of the box, a good baby-sitter?  Only someone who thinks that intelligence is some all-powerful elixir.

Back to GPT-3, DALL-E, LaMDA, and other deep learning models: It seems to me that the question of whether or not they’re taking us closer to “Artificial General Intelligence” (or, heaven help us, “sentience”) is based not on any analysis of what AGI would consist of but on our being gobsmacked by what they can do.  But refuting our intuitions about what a massively trained, massively parameterized network is capable of (and I’ll admit that they refuted mine) should not be confused with a path toward omniscience and omnipotence.  GPT-3 is unquestionably awesome at its designed-in goal of extrapolating text.  But that is not the main goal of human language competence, namely expressing and perceiving intentions.  Indeed, the program is not even set up to input or output intentions, since that would require deep thought about how to represent intentions, which went out of style in AI as the big-data/deep-learning hammer turned every problem into a nail.  That’s why no one is using GPT-3 to answer their email or write an article or legal brief (except to show how well the program can spoof one).

So is Scott Alexander right that every scaled-up GPT-n will avoid the blunders that Marcus and Davis show in GPT-(n-1)?  Perhaps, though I doubt it, for reasons that Marcus and Davis explain well (in particular, that astronomical training sets at best compensate for their being crippled by the lack of a world model).  But even if they do, that would show neither that human language competence is a GPT (given the totality of the relevant evidence) nor that GPT-n is approaching Artificial General Intelligence (whatever that is).


Scott Aaronson’s Response

As usual, I find Steve crystal-clear and precise—so much so that we can quickly dispense with the many points of agreement.  Basically, one side says that, while GPT-3 is of course mind-bogglingly impressive, and while it refuted confident predictions that no such thing would work, in the end it’s just a text-prediction engine that will run with any absurd premise it’s given, and it fails to model the world the way humans do.  The other side says that, while GPT-3 is of course just a text-prediction engine that will run with any absurd premise it’s given, and while it fails to model the world the way humans do, in the end it’s mind-bogglingly impressive, and it refuted confident predictions that no such thing would work.

All the same, I do think it’s possible to identify a substantive disagreement between the distinguished baby-boom linguistic thinkers and the gen-X/gen-Y blogging Scott A.’s: namely, whether there’s a coherent concept of “general intelligence.”  Steve writes:

No logician has ever outlined a normative model of what general intelligence would consist of, and even Turing swapped it out for the problem of fooling an observer, which spawned 70 years of unhelpful reminders of how easy it is to fool an observer.

I freely admit that I have no principled definition of “general intelligence,” let alone of “superintelligence.”  To my mind, though, there’s a simple proof-of-principle that there’s something an AI could do that pretty much any of us would call “superintelligent.”  Namely, it could say whatever Albert Einstein would say in a given situation, while thinking a thousand times faster.  Feed the AI all the information about physics that the historical Einstein had in 1904, for example, and it would discover special relativity in a few hours, followed by general relativity a few days later.  Give the AI a year, and it would think … well, whatever thoughts Einstein would’ve thought, if he’d had a millennium in peak mental condition to think them.

If nothing else, this AI could work by simulating Einstein’s brain neuron-by-neuron—provided we believe in the computational theory of mind, as I’m assuming we do.  It’s true that we don’t know the detailed structure of Einstein’s brain in order to simulate it (we might have, had the pathologist who took it from the hospital used cold rather than warm formaldehyde).  But that’s irrelevant to the argument.  It’s also true that the AI won’t experience the same environment that Einstein would have—so, alright, imagine putting it in a very comfortable simulated study, and letting it interact with the world’s flesh-based physicists.  A-Einstein can even propose experiments for the human physicists to do—he’ll just have to wait an excruciatingly long subjective time for their answers.  But that’s OK: as an AI, he never gets old.

Next let’s throw into the mix AI Von Neumann, AI Ramanujan, AI Jane Austen, even AI Steven Pinker—all, of course, sped up 1,000x compared to their meat versions, even able to interact with thousands of sped-up copies of themselves and other scientists and artists.  Do we agree that these entities quickly become the predominant intellectual force on earth—to the point where there’s little for the original humans left to do but understand and implement the AIs’ outputs (and, of course, eat, drink, and enjoy their lives, assuming the AIs can’t or don’t want to prevent that)?  If so, then that seems to suffice to call the AIs “superintelligences.”  Yes, of course they’re still limited in their ability to manipulate the physical world.  Yes, of course they still don’t optimize arbitrary goals.  All the same, these AIs have effects on the real world consistent with the sudden appearance of beings able to run intellectual rings around humans—not exactly as we do around chimpanzees, but not exactly unlike it either.

I should clarify that, in practice, I don’t expect AGI to work by slavishly emulating humans—and not only because of the practical difficulties of scanning brains, especially deceased ones.  Like with airplanes, like with existing deep learning, I expect future AIs to take some inspiration from the natural world but also to depart from it whenever convenient.  The point is that, since there’s something that would plainly count as “superintelligence,” the question of whether it can be achieved is therefore “merely” an engineering question, not a philosophical one.

Obviously I don’t know the answer to the engineering question: no one does!  One could consistently hold that, while the thing I described would clearly count as “superintelligence,” it’s just an amusing fantasy, unlikely to be achieved for millennia if ever.  One could hold that all the progress in AI so far, including the scaling of language models, has taken us only 0% or perhaps 0.00001% of the way toward superintelligence so defined.

So let me make two comments about the engineering question.  The first is that there’s good news here, at least epistemically: unlike with the philosophical questions, we’re virtually guaranteed more clarity over time!  Indeed, we’ll know vastly more just by the end of this decade, as the large language models are further scaled and tweaked, and we find out whether they develop effective representations of the outside world and of themselves, the ability to reject absurd premises and avoid self-contradiction, or even the ability to generate original mathematical proofs and scientific hypotheses.  Of course, Gary Marcus and Scott Alexander have already placed concrete bets on the table for what sorts of things will be possible by 2030.  For all their differences in rhetoric, I was struck that their actual probabilities differed much more modestly.

So then what explains the glaring differences in rhetoric?  This brings me to my second comment: whenever there’s a new, rapidly-growing, poorly-understood phenomenon, whether it’s the Internet or AI or COVID, there are two wildly different modes of responding to it, which we might call “February 2020 mode” and “March 2020 mode.”  In February 2020 mode, one says: yes, a naïve extrapolation might lead someone to the conclusion that this new thing is going to expand exponentially and conquer the world, dramatically changing almost every other domain—but precisely because that conclusion seems absurd on its face, it’s our responsibility as serious intellectuals to articulate what’s wrong with the arguments that lead to it.  In March 2020 mode, one says: holy crap, the naïve extrapolation seems right!  Prepare!!  Why didn’t we start earlier?

Often, to be sure, February 2020 mode is the better mode, at least for outsiders—as with the Y2K bug, or the many disease outbreaks that fizzle.  My point here is simply that February 2020 mode and March 2020 mode differ by only a month.  Sometimes hearing a single argument, seeing a single example, is enough to trigger an epistemic cascade, causing all the same facts to be seen in a new light.  As a result, reasonable people might find themselves on opposite sides of the chasm even if they started just a few steps from each other.

As for me?  Well, I’m currently trying to hold the line around February 26, 2020.  Suspending my day job in the humdrum, pedestrian field of quantum computing, I’ve decided to spend a year at OpenAI, thinking about the theoretical foundations of AI safety.  But for now, only a year.


Steven Pinker’s Response to Scott

Thanks, Scott, for your thoughtful and good-natured reply, and for offering me the opportunity to respond  in Shtetl-Optimized, one of my favorite blogs. Despite the areas of agreement, I still think that discussions of AI and its role in human affairs—including AI safety—will be muddled as long as the writers treat intelligence as an undefined superpower rather than a mechanisms with a makeup that determines what it can and can’t do. We won’t get clarity on AI if we treat the “I” as “whatever fools us,” or “whatever amazes us,” or “whatever IQ tests measure,” or “whatever we have more of than animals do,” or “whatever Einstein has more of than we do”—and then start to worry about a superintelligence that has much, much more of whatever that is.

Take Einstein sped up a thousandfold. To begin with, current AI is not even taking us in that direction. As you note, no one is reverse-engineering his connectome, and current AI does not think the way Einstein thought, namely by visualizing physical scenarios and manipulating mathematical equations. Its current pathway would be to train a neural network with billions of physics problems and their solutions and hope that it would soak up the statistical patterns.

Of course, the reason you pointed to a sped-up Einstein was to procrastinate having to define “superintelligence.” But if intelligence is a collection of mechanisms rather than a quantity that Einstein was blessed with a lot of, it’s not clear that just speeding him up would capture what anyone would call superintelligence. After all, in many areas Einstein was no Einstein. You above all could speak of his not-so-superintelligence in quantum physics, and when it came world affairs, in the early 1950s he offered the not exactly prescient or practicable prescription, “Only the creation of a world government can prevent the impending self-destruction of mankind.” So it’s not clear that we would call a system that could dispense such pronouncements in seconds rather than years “superintelligent.” Nor with speeding up other geniuses, say, an AI Bertrand Russell, who would need just nanoseconds to offer his own solution for world peace: the Soviet Union would be given an ultimatum that unless it immediately submitted to world government, the US (which at the time had a nuclear monopoly) would bomb it with nuclear weapons.

My point isn’t to poke retrospective fun at brilliant men, but to reiterate that brilliance itself is not some uncanny across-the-board power that can be “scaled” by speeding it up or otherwise; it’s an engineered system that does particular things in particular ways. Only with a criterion for intelligence can we say which of these counts as intelligent.

Now, it’s true that raw speed makes new kinds of computation possible, and I feel silly writing this to you of all people, but speeding a process up by a constant factor is of limited use with problems that are exponential, as the space of possible scientific theories, relative to their complexity, must be. Speeding up a search in the space of theories a thousandfold would be a rounding error in the time it took to find a correct one. Scientific progress depends on the search exploring the infinitesimal fraction of the space in which the true theories are likely to lie, and this depends on the quality of the intelligence, not just its raw speed.

And it depends as well on a phenomenon you note, namely that scientific progress depends on empirical discovery, not deduction from a silicon armchair. The particle accelerators and space probes and wet labs and clinical trials still have to be implemented, with data accumulating at a rate set by the world. Strokes of genius can surely speed up the rate of discovery, but in the absence of omniscience about every particle, the time scale will still be capped by empirical reality. And this in turn directs the search for viable theories: which part of the space one should explore is guided by the current state of scientific knowledge, which depends on the tempo of discovery. Speeding up scientists a thousandfold would not speed up science a thousandfold.

All this is relevant to AI safety. I’m all for safety, but I worry that the dazzling intellectual capital being invested in the topic will not make us any safer if it begins with a woolly conception of intelligence as a kind of wonder stuff that you can have in different amounts. It leads to unhelpful analogies, like “exponential increase in the number of infectious people during a pandemic” ≈ “exponential increase in intelligence in AI systems.” It encourages other questionable extrapolations from the human case, such as imagining that an intelligent tool will develop an alpha-male lust for domination. Worst of all, it may encourage misconceptions of AI risk itself, particularly the standard scenario in which a hypothetical future AGI is given some preposterously generic single goal such as “cure cancer” or “make people happy” and theorists fret about the hilarious collateral damage that would ensue.

If intelligence is a mechanism rather than a superpower, the real dangers of AI come into sharper focus. An AI system designed to replace workers may cause mass unemployment; a system designed to use data to sort people may sort them in ways we find invidious; a system designed to fool people may be exploited to fool them in nefarious ways; and as many other hazards as there are AI systems. These dangers are not conjectural, and I suspect each will have to be mitigated by a different combination of policies and patches, just like other safety challenges such as falls, fires, and drownings. I’m curious whether, once intelligence is precisely characterized, any abstract theoretical foundations of AI safety will be useful in dealing with the actual AI dangers that will confront us.

An understandable failing?

Sunday, May 29th, 2022

I hereby precommit that this will be my last post, for a long time, around the twin themes of (1) the horribleness in the United States and the world, and (2) my desperate attempts to reason with various online commenters who hold me personally complicit in all this horribleness. I should really focus my creativity more on actually fixing the world’s horribleness, than on seeking out every random social-media mudslinger who blames me for it, shouldn’t I? Still, though, isn’t undue obsession with the latter a pretty ordinary human failing, a pretty understandable one?

So anyway, if you’re one of the thousands of readers who come here simply to learn more about quantum computing and computational complexity, rather than to try to provoke me into mounting a public defense of my own existence (which defense will then, ironically but inevitably, stimulate even more attacks that need to be defended against) … well, either scroll down to the very end of this post, or wait for the next post.


Thanks so much to all my readers who donated to Fund Texas Choice. As promised, I’ve personally given them a total of $4,106.28, to match the donations that came in by the deadline. I’d encourage people to continue donating anyway, while for my part I’ll probably run some more charity matching campaigns soon. These things are addictive, like pulling the lever of a slot machine, but where the rewards go to making the world an infinitesimal amount more consistent with your values.


Of course, now there’s a brand-new atrocity to shame my adopted state of Texas before the world. While the Texas government will go to extraordinary lengths to protect unborn children, the world has now witnessed 19 of itsborn children consigned to gruesome deaths, as the “good guys with guns”—waited outside and prevented parents from entering the classrooms where their children were being shot. I have nothing original to add to the global outpourings of rage and grief. Forget about the statistical frequency of these events: I know perfectly well that the risk from car crashes and home accidents is orders-of-magnitude greater. Think about it this way: the United States is now known to the world as “the country that can’t or won’t do anything to stop its children from semi-regularly being gunned down in classrooms,” not even measures that virtually every other comparable country on earth has successfully taken. It’s become the symbol of national decline, dysfunction, and failure. If so, then the stakes here could fairly be called existential ones—not because of its direct effects on child life expectancy or GDP or any other index of collective well-being that you can define and measure, but rather, because a country that lacks the will to solve this will be judged by the world, and probably accurately, as lacking the will to solve anything else.


In return for the untold thousands of hours I’ve poured into this blog, which has never once had advertising or asked for subscriptions, my reward has been years of vilification by sneerers and trolls. Some of the haters even compare me to Elliot Rodger and other aggrieved mass shooters. And I mean: yes, it’s true that I was bullied and miserable for years. It’s true that Elliot Rodger, Salvador Ramos (the Uvalde shooter), and most other mass shooters were also bullied and miserable for years. But, Scott-haters, if we’re being intellectually honest about this, we might say that the similarities between the mass shooter story and the Scott Aaronson story end at a certain point not very long after that. We might say: it’s not just that Aaronson didn’t respond by hurting anybody—rather, it’s that his response loudly affirmed the values of the Enlightenment, meaning like, the whole package, from individual autonomy to science and reason to the rejection of sexism and racism to everything in between. Affirmed it in a manner that’s not secretly about popularity (demonstrably so, because it doesn’t get popularity), affirmed it via self-questioning methods intellectually honest enough that they’d probably still have converged on the right answer even in situations where it’s now obvious that almost everyone you around would’ve been converging on the wrong answer, like (say) Nazi Germany or the antebellum South.

I’ve been to the valley of darkness. While there, I decided that the only “revenge” against the bullies that was possible or desirable was to do something with my life, to achieve something in science that at least some bullies might envy, while also starting a loving family and giving more than most to help strangers on the Internet and whatever good cause comes to his attention and so on. And after 25 years of effort, some people might say I’ve sort of achieved the “revenge” as I’d then defined it. And they might further say: if you could get every school shooter to redefine “revenge” as “becoming another Scott Aaronson,” that would be, you know, like, a step upwards. An improvement.


And let this be the final word on the matter that I ever utter in all my days, to the thousands of SneerClubbers and Twitter randos who pursue this particular line of attack against Scott Aaronson (yes, we do mean the thousands—which means, it both feels to its recipient like the entire earth yet actually is less than 0.01% of the earth).

We see what Scott did with his life, when subjected for a decade to forms of psychological pressure that are infamous for causing young males to lash out violently. What would you have done with your life?


A couple weeks ago, when the trolling attacks were arriving minute by minute, I toyed with the idea of permanently shutting down this blog. What’s the point? I asked myself. Back in 2005, the open Internet was fun; now it’s a charred battle zone. Why not restrict conversation to my academic colleagues and friends? Haven’t I done enough for a public that gives me so much grief? I was dissuaded by many messages of support from loyal readers. Thank you so much.


If anyone needs something to cheer them up, you should really watch Prehistoric Planet, narrated by an excellent, 96-year-old David Attenborough. Maybe 35 years from now, people will believe dinosaurs looked or acted somewhat differently from these portrayals, just like they believe somewhat differently now from when I was a kid. On the other hand, if you literally took a time machine to the Late Cretaceous and starting filming, you couldn’t get a result that seemed more realistic, let’s say to a documentary-watching child, than these CGI dinosaurs on their CGI planet seem. So, in the sense of passing that child’s Turing Test, you might argue, the problem of bringing back the dinosaurs has now been solved.

If you … err … really want to be cheered up, you can follow up with Dinosaur Apocalypse, also narrated by Attenborough, where you can (again, as if you were there) watch the dinosaurs being drowned and burned alive in their billions when the asteroid hits. We’d still be scurrying under rocks, were it not for that lucky event that only a monster could’ve called lucky at the time.


Several people asked me to comment on the recent savage investor review against the quantum computing startup IonQ. The review amusingly mixed together every imaginable line of criticism, with every imaginable degree of reasonableness from 0% to 100%. Like, quantum computing is impossible even in theory, and (in the very next sentence) other companies are much closer to realizing quantum computing than IonQ is. And IonQ’s response to the criticism, and see also this by the indefatigable Gil Kalai.

Is it, err, OK if I sit this one out for now? There’s probably, like, actually an already-existing machine learning model where, if you trained it on all of my previous quantum computing posts, it would know exactly what to say about this.

An update on the campaign to defend serious math education in California

Tuesday, April 26th, 2022

Update (April 27): Boaz Barak—Harvard CS professor, longtime friend-of-the-blog, and coauthor of my previous guest post on this topic—has just written an awesome FAQ, providing his personal answers to the most common questions about what I called our “campaign to defend serious math education.” It directly addresses several issues that have already come up in the comments. Check it out!


As you might remember, last December I hosted a guest post about the “California Mathematics Framework” (CMF), which was set to cause radical changes to precollege math in California—e.g., eliminating 8th-grade algebra and making it nearly impossible to take AP Calculus. I linked to an open letter setting out my and my colleagues’ concerns about the CMF. That letter went on to receive more than 1700 signatures from STEM experts in industry and academia from around the US, including recipients of the Nobel Prize, Fields Medal, and Turing Award, as well as a lot of support from college-level instructors in California. 

Following widespread pushback, a new version of the CMF appeared in mid-March. I and others are gratified that the new version significantly softens the opposition to acceleration in high school math and to calculus as a central part of mathematics.  Nonetheless, we’re still concerned that the new version promotes a narrative about data science that’s a recipe for cutting kids off from any chance at earning a 4-year college degree in STEM fields (including, ironically, in data science itself).

To that end, some of my Californian colleagues have issued a new statement today on behalf of academic staff at 4-year colleges in California, aimed at clearing away the fog on how mathematics is related to data science. I strongly encourage my readers on the academic staff at 4-year colleges in California to sign this commonsense statement, which has already been signed by over 250 people (including, notably, at least 50 from Stanford, home of two CMF authors).

As a public service announcement, I’d also like to bring to wider awareness Section 18533 of the California Education Code, for submitting written statements to the California State Board of Education (SBE) about errors, objections, and concerns in curricular frameworks such as the CMF.  

The SBE is scheduled to vote on the CMF in mid-July, and their remaining meeting before then is on May 18-19 according to this site, so it is really at the May meeting that concerns need to be aired.  Section 18533 requires submissions to be written (yes, snail mail) and postmarked at least 10 days before the SBE meeting. So to make your voice heard by the SBE, please send your written concern by certified mail (for tracking, but not requiring signature for delivery), no later than Friday May 6, to State Board of Education, c/o Executive Secretary of the State Board of Education, 1430 N Street, Room 5111, Sacramento, CA 95814, complemented by an email submission to sbe@cde.ca.gov and mathframework@cde.ca.gov.

On form versus meaning

Sunday, April 24th, 2022

There is a fundamental difference between form and meaning. Form is the physical structure of something, while meaning is the interpretation or concept that is attached to that form. For example, the form of a chair is its physical structure – four legs, a seat, and a back. The meaning of a chair is that it is something you can sit on.

This distinction is important when considering whether or not an AI system can be trained to learn semantic meaning. AI systems are capable of learning and understanding the form of data, but they are not able to attach meaning to that data. In other words, AI systems can learn to identify patterns, but they cannot understand the concepts behind those patterns.

For example, an AI system might be able to learn that a certain type of data is typically associated with the concept of “chair.” However, the AI system would not be able to understand what a chair is or why it is used. In this way, we can see that an AI system trained on form can never learn semantic meaning.

–GPT3, when I gave it the prompt “Write an essay proving that an AI system trained on form can never learn semantic meaning” 😃