Archive for September, 2018

It’s hard to think when someone Hadamards your brain

Tuesday, September 25th, 2018

“Unperformed measurements have no results.” —Asher Peres


With two looming paper deadlines, two rambunctious kids, an undergrad class, program committee work, faculty recruiting, and an imminent trip to Capitol Hill to answer congressional staffers’ questions about quantum computing (and for good measure, to give talks at UMD and Johns Hopkins), the only sensible thing to do is to spend my time writing a blog post.

So: a bunch of people asked for my reaction to the new Nature Communications paper by Daniela Frauchiger and Renato Renner, provocatively titled “Quantum theory cannot consistently describe the use of itself.”  Here’s the abstract:

Quantum theory provides an extremely accurate description of fundamental processes in physics.  It thus seems likely that the theory is applicable beyond the, mostly microscopic, domain in which it has been tested experimentally.  Here, we propose a Gedankenexperiment to investigate the question whether quantum theory can, in principle, have universal validity.  The idea is that, if the answer was yes, it must be possible to employ quantum theory to model complex systems that include agents who are themselves using quantum theory.  Analysing the experiment under this presumption, we find that one agent, upon observing a particular measurement outcome, must conclude that another agent has predicted the opposite outcome with certainty.  The agents’ conclusions, although all derived within quantum theory, are thus inconsistent.  This indicates that quantum theory cannot be extrapolated to complex systems, at least not in a straightforward manner.

I first encountered Frauchiger and Renner’s argument back in July, when Renner (who I’ve known for years, and who has many beautiful results in quantum information) presented it at a summer school in Boulder, CO where I was also lecturing.  I was sufficiently interested (or annoyed?) that I pulled an all-nighter working through the argument, then discussed it at lunch with Renner as well as John Preskill.  I enjoyed figuring out exactly where I get off Frauchiger and Renner’s train—since I do get off their train.  While I found their paper thought-provoking, I reject the contention that there’s any new problem with QM’s logical consistency: for reasons I’ll explain, I think there’s only the same quantum weirdness that (to put it mildly) we’ve known about for quite some time.

In more detail, the paper makes a big deal about how the new argument rests on just three assumptions (briefly, QM works, measurements have definite outcomes, and the “transitivity of knowledge”); and how if you reject the argument, then you must reject at least one of the three assumptions; and how different interpretations (Copenhagen, Many-Worlds, Bohmian mechanics, etc.) make different choices about what to reject.

But I reject an assumption that Frauchiger and Renner never formalize.  That assumption is, basically: “it makes sense to chain together statements that involve superposed agents measuring each other’s brains in different incompatible bases, as if the statements still referred to a world where these measurements weren’t being done.”  I say: in QM, even statements that look “certain” in isolation might really mean something like “if measurement X is performed, then Y will certainly be a property of the outcome.”  The trouble arises when we have multiple such statements, involving different measurements X1, X2, …, and (let’s say) performing X1 destroys the original situation in which we were talking about performing X2.

But I’m getting ahead of myself.  The first thing to understand about Frauchiger and Renner’s argument is that, as they acknowledge, it’s not entirely new.  As Preskill helped me realize, the argument can be understood as simply the “Wigner’s-friendification” of Hardy’s Paradox.  In other words, the new paradox is exactly what you get if you take Hardy’s paradox from 1992, and promote its entangled qubits to the status of conscious observers who are in superpositions over thinking different thoughts.  Having talked to Renner about it, I don’t think he fully endorses the preceding statement.  But since I fully endorse it, let me explain the two ingredients that I think are getting combined here—starting with Hardy’s paradox, which I confess I didn’t know (despite knowing Lucien Hardy himself!) before the Frauchiger-Renner paper forced me to learn it.

Hardy’s paradox involves the two-qubit entangled state

$$\left|\psi\right\rangle = \frac{\left|00\right\rangle + \left|01\right\rangle + \left|10\right\rangle}{\sqrt{3}}.$$

And it involves two agents, Alice and Bob, who measure the left and right qubits respectively, both in the {|+〉,|-〉} basis.  Using the Born rule, we can straightforwardly calculate the probability that Alice and Bob both see the outcome |-〉 as 1/12.

So what’s the paradox?  Well, let me now “prove” to you that Alice and Bob can never both get |-〉.  Looking at |ψ〉, we see that conditioned on Alice’s qubit being in the state |0〉, Bob’s qubit is in the state |+〉, so Bob can never see |-〉.  And conversely, conditioned on Bob’s qubit being in the state |0〉, Alice’s qubit is in the state |+〉, so Alice can never see |-〉.  OK, but since |ψ〉 has no |11〉 component, at least one of the two qubits must be in the state |0〉, so therefore at least one of Alice and Bob must see |+〉!

When it’s spelled out so plainly, the error is apparent.  Namely, what do we even mean by a phrase like “conditioned on Bob’s qubit being in the state |0〉,” unless Bob actually measured his qubit in the {|0〉,|1〉} basis?  But if Bob measured his qubit in the {|0〉,|1〉} basis, then we’d be talking about a different, counterfactual experiment.  In the actual experiment, Bob measures his qubit only in the {|+〉,|-〉} basis, and Alice does likewise.  As Asher Peres put it, “unperformed measurements have no results.”

Anyway, as I said, if you strip away the words and look only at the actual setup, it seems to me that Frauchiger and Renner’s contribution is basically to combine Hardy’s paradox with the earlier Wigner’s friend paradox.  They thereby create something that doesn’t involve counterfactuals quite as obviously as Hardy’s paradox does, and so requires a new discussion.

But to back up: what is Wigner’s friend?  Well, it’s basically just Schrödinger’s cat, except that now it’s no longer a cat being maintained in coherent superposition but a person, and we’re emphatic in demanding that this person be treated as a quantum-mechanical observer.  Thus, suppose Wigner entangles his friend with a qubit, like so:

$$ \left|\psi\right\rangle = \frac{\left|0\right\rangle \left|FriendSeeing0\right\rangle + \left|1\right\rangle \left|FriendSeeing1\right\rangle}{\sqrt{2}}. $$

From the friend’s perspective, the qubit has been measured and has collapsed to either |0〉 or |1〉.  From Wigner’s perspective, no such thing has happened—there’s only been unitary evolution—and in principle, Wigner could even confirm that by measuring |ψ〉 in a basis that included |ψ〉 as one of the basis vectors.  But how can they both be right?

Many-Worlders will yawn at this question, since for them, of course “the collapse of the wavefunction” is just an illusion created by the branching worlds, and with sufficiently advanced technology, one observer might experience the illusion even while a nearby observer doesn’t.  Ironically, the neo-Copenhagenists / Quantum Bayesians / whatever they now call themselves, though they consider themselves diametrically opposed to the Many-Worlders (and vice versa), will also yawn at the question, since their whole philosophy is about how physics is observer-relative and it’s sinful even to think about an objective, God-given “quantum state of the universe.”  If, on the other hand, you believed both that

  1. collapse is an objective physical event, and
  2. human mental states can be superposed just like anything else in the physical universe,

then Wigner’s thought experiment probably should rock your world.

OK, but how do we Wigner’s-friendify Hardy’s paradox?  Simple: in the state

$$\left|\psi\right\rangle = \frac{\left|00\right\rangle + \left|01\right\rangle + \left|10\right\rangle}{\sqrt{3}},$$

we “promote” Alice’s and Bob’s entangled qubits to two conscious observers, call them Charlie and Diane respectively, who can think two different thoughts that we represent by the states |0〉 and |1〉.  Using far-future technology, Charlie and Diane have been not merely placed into coherent superpositions over mental states but also entangled with each other.

Then, as before, Alice will measure Charlie’s brain in the {|+〉,|-〉} basis, and Bob will measure Diane’s brain in the {|+〉,|-〉} basis.  Since the whole setup is mathematically identical to that of Hardy’s paradox, the probability that Alice and Bob both get the outcome |-〉 is again 1/12.

Ah, but now we can reason as follows:

  1. Whenever Alice gets the outcome |-〉, she knows that Diane must be in the |1〉 state (since, if Diane were in the |0〉 state, then Alice would’ve certainly seen |+〉).
  2. Whenever Diane is in the |1〉 state, she knows that Charlie must be in the |0〉 state (since there’s no |11〉 component).
  3. Whenever Charlie is in the |0〉 state, she knows that Diane is in the |+〉 state, and hence Bob can’t possibly see the outcome |-〉 when he measures Diane’s brain in the {|+〉,|-〉} basis.

So to summarize, Alice knows that Diane knows that Charlie knows that Bob can’t possibly see the outcome |-〉.  By the “transitivity of knowledge,” this implies that Alice herself knows that Bob can’t possibly see |-〉.  And yet, as we pointed out before, quantum mechanics predicts that Bob can see |-〉, even when Alice has also seen |-〉.  And Alice and Bob could even do the experiment, and compare notes, and see that their “certain knowledge” was false.  Ergo, “quantum theory can’t consistently describe its own use”!

You might wonder: compared to Hardy’s original paradox, what have we gained by waving a magic wand over our two entangled qubits, and calling them “conscious observers”?  Frauchiger and Renner’s central claim is that, by this gambit, they’ve gotten rid of the illegal counterfactual reasoning that we needed to reach a contradiction in our analysis of Hardy’s paradox.  After all, they say, none of the steps in their argument involve any measurements that aren’t actually performed!  But clearly, even if no one literally measures Charlie in the {|0〉,|1〉} basis, he’s still there, thinking either the thought corresponding to |0〉 or the thought corresponding to |1〉.  And likewise Diane.  Just as much as Alice and Bob, Charlie and Diane both exist even if no one measures them, and they can reason about what they know and what they know that others know.  So then we’re free to chain together the “certainties” of Alice, Bob, Charlie, and Diane in order to produce our contradiction.

As I already indicated, I reject this line of reasoning.  Specifically, I get off the train at what I called step 3 above.  Why?  Because the inference from Charlie being in the |0〉 state to Bob seeing the outcome |+〉 holds for the original state |ψ〉, but in my view it ceases to hold once we know that Alice is going to measure Charlie in the {|+〉,|-〉} basis, which would involve a drastic unitary transformation (specifically, a “Hadamard”) on the quantum state of Charlie’s brain.  I.e., I don’t accept that we can take knowledge inferences that would hold in a hypothetical world where |ψ〉 remained unmeasured, with a particular “branching structure” (as a Many-Worlder might put it), and extend them to the situation where Alice performs a rather violent measurement on |ψ〉 that changes the branching structure by scrambling Charlie’s brain.

In quantum mechanics, measure or measure not: there is no if you hadn’t measured.


Unrelated Announcement: My awesome former PhD student Michael Forbes, who’s now on the faculty at the University of Illinois Urbana-Champaign, asked me to advertise that the UIUC CS department is hiring this year in all areas, emphatically including quantum computing. And, well, I guess my desire to do Michael a solid outweighed my fear of being tried for treason by my own department’s recruiting committee…


Another Unrelated Announcement: As of Sept. 25, 2018, it is the official editorial stance of Shtetl-Optimized that the Riemann Hypothesis and the abc conjecture both remain open problems.

CS and quantum information at UT Austin: come join us!

Wednesday, September 19th, 2018

Merry Yom Kippur!

This is my annual post where I tell you about opportunities available at UT Austin, which has long been a safe space for CS research, and which we hope will rapidly become (or return to its historical role as…) a safe space for quantum computing and information.

If you’re interested in faculty positions in computer science at UT, I have some great news: we plan to do a lot of hiring this year!  Because of the sheer volume of interviews we’ll be doing, we’d like to start our recruiting season already in the fall.  So we’re extending an unusual invitation: if you already have your materials ready, we encourage you to apply for faculty positions right now.  If you’re chosen for an interview, we could schedule it for the next few months.

We’ll be looking for great candidates across all parts of CS, but one particular interest is hiring another quantum computing theorist in CS (i.e., besides me), most likely a junior person.  While not everyone who reads this blog is a plausible candidate, and not every plausible candidate reads this blog, the intersection is surely non-negligible!  So again: we encourage you to apply right now, so we can start scheduling interviews already.

I’m also on the lookout for postdocs, mainly in theoretical quantum computing and information.  (I, and others in the theory group, are also collectively interested in postdocs in classical computational complexity.)  If you’re interested in doing a postdoc with me starting in Fall 2019, the procedure, like in previous years, is this:

  • Email me introducing yourself (if I don’t already know you), and include your CV and up to three representative papers.  Do this even if you already emailed me before.
  • Arrange for two recommendation letters to be emailed to me.

We’ll set a deadline for this of December 15.

Finally, if you’re interested in pursuing a PhD in CS at UT, please apply here!  The deadline, again, is December 15.  Just like every year, I’m on the lookout for superb, complexity-loving, quantum- or quantum-curious, lower-bound-hungry students of every background, and if you specify that you want to work with me, I’ll be sure to see your application.  Emailing me won’t help: everything is done through the application process.

As we like to say down here in Texas, hook ’em Hadamards!  (Well OK, no, we don’t especially like to say that.  It’s just a slogan that I found amusing a few years ago.)

My Tomassoni-Chisesi Prize talk

Saturday, September 15th, 2018

Update (Sep. 21) Video of Philip Kim’s and my talks is now available! (But not streaming, just a giant mp4 that you can download.)


On Thursday, I had the incredible honor of accepting the 2018 Tomassoni-Chisesi Prize in Physics at Università “La Sapienza” in Rome—“incredible” mostly because I’m of course not a physicist.  (I kept worrying they’d revoke the award when they realized I could barely solve the wave equation.)  This is not the first time quantum information was recognized; the prize has previously gone to Serge Haroche and Alain Aspect.  This year, for the first time, there was both an under-40 and an over-40 award; the latter went to Philip Kim, a quantum materials researcher at Harvard who I had the privilege to meet on this trip (he’s the taller one below).

I’m unbelievably grateful, not only to the committee, and its chair Giorgio Parisi (whose seminal work on phase transitions and satisfiability I’d long known, but who I met for the first time on this trip), but to Fabio Sciarrino, Paolo Mataloni, Fernanda Lupinacci, and everyone else who graciously hosted me and helped make my hastily-planned visit to Europe a success.

The department I visited has a storied history: here are the notes that Enrico Fermi left, documenting what he covered each day in his physics class in 1938.  The reason the last squares are blank is that, when Fermi and his Jewish wife left for Stockholm on the occasion of Fermi’s Nobel Prize, they continued directly to the US rather than return to an Italy that had just passed the racial laws.

On my way to Rome, I also gave two talks at a “quantum computing hackathon” in Zurich, called QuID (Quantum Information for Developers).  Thanks so much to Lidia del Rio for arranging that visit, which was fantastic as well.

To accept the Tomassoni-Chisesi prize, I had to give a 40-minute talk summarizing all my research from 2000 to the present—the hardest part being that I had to do it while wearing a suit, and sweating at least half my body weight.  (I also had a cold and a hacking cough.)  I think there will eventually be video of my and Prof. Kim’s talks, but it’s not yet available.  In the meantime, for those who are interested, here are my PowerPoint slides, and here’s the title and abstract:

Three Questions About Quantum Computing
Scott Aaronson (University of Texas at Austin)

I’ll discuss some of my work in quantum computing over the past 18 years, organizing it in terms of three questions.  First, how can we demonstrate, using near-future hardware, that quantum computers can get any genuine speedups at all over classical computers (ideally useful speedups)?  Second, what sorts of problems would be hard even for quantum computers, and can we turn the intractability of those problems to our advantage?  Third, are there physically reasonable models of computation even more powerful than quantum computing, or does quantum computing represent an ultimate limit?

If you’re a regular reader here, most of the content will be stuff you’ve seen before, with the exception of a story or two like the following:

Last night I was talking to my mom about my grandfather, who as it happens came through Rome 73 years ago, as an engineer with the US Army.  Disabling landmines was, ironically, one of the safer ways to be a Jew in Europe at that time.  If you’d told him then that, three-quarters of a century later, his grandson would be back here in Rome to accept an award for research in quantum computational complexity … well, I’m sure he’d have any number of questions about it.  But one thing I clearly remember is that my grandfather was always full of effusive praise for the warmth of the people he met in Italy—how, for example, Italian farmers would share food with the hungry and inadequately-provisioned Allied soldiers, despite supposedly being on the opposing side.  Today, every time I’m in Italy for a conference or a talk, I get to experience that warmth myself, and certainly the food part.

(Awww!  But I meant it.  Italians are super-warm.)

There’s a view that scientists should just pursue the truth and be serenely unaffected by prizes, recognition, and other baubles.  I think that view has a great deal to be said for it.  But thinking it over recently, I struck the following mental bargain: if I’m going to get depressed on a semi-regular basis by people attacking me online—and experience shows that I will—well then, I also get to enjoy whatever’s the opposite of that with a clear conscience.  It’s not arrogance or self-importance; it’s just trying to balance things out a bit!

So again, thanks so much—to the physics department of La Sapienza, but also to my family, friends, mentors, readers, colleagues at UT Austin and around the world, and everyone else who helps make possible whatever it is that I do.