Archive for the ‘Quantum Computing Since Democritus’ Category

Quantum Computing Since Democritus: New Foreword!

Saturday, June 20th, 2020

Time for a non-depressing post. Quantum Computing Since Democritus, which is already available in English and Russian, is about to be published in both Chinese and Japanese. (So if you read this blog, but have avoided tackling QCSD because your Chinese or Japanese is better than your English, today’s your day!) To go along with the new editions, Cambridge University Press asked me to write a new foreword, reflecting on what happened in the seven years since the book was published. The editor, Paul Dobson, kindly gave me permission to share the new foreword on my blog. So without further ado…


Quantum Computing Since Democritus began its life as a course that I taught at the University of Waterloo in 2006.  Seven years later, it became the book that you now hold.  Its preface ended with the following words:

Here’s hoping that, in 2020, this book will be as badly in need of revision as the 2006 lecture notes were in 2013.

As I write this, in June 2020, a lot has happened that I would never have predicted in 2013.  Donald Trump is the President of the United States, and is up for reelection shortly.  This is not a political book, so let me resist the urge to comment further.  Meanwhile, the coronavirus pandemic is ravaging the world, killing hundreds of thousands of people, crashing economies, and shutting down schools and universities (including mine).  And in the past few weeks, protests against racism and police brutality started in America and then spread to the world, despite the danger of protesting during a pandemic.

Leaving aside the state of the world, my own life is also very different than it was seven years ago.  Along with my family, I’ve moved from MIT to the University of Texas in Austin.  My daughter, who was born at almost exactly the same time as Quantum Computing Since Democritus, is now a first-grader, and is joined by a 3-year-old son.  When my daughter’s school shut down due to the coronavirus, I began home-schooling her in math, computer science, and physics—in some of the exact same topics covered in this book.  I’m now engaged in an experiment to see what portion of this material can be made accessible to a 7-year-old.

But what about the material itself?  How has it held up over seven years?  Both the bad news and the (for you) good news, I suppose, is that it’s not particularly out of date.  The intellectual underpinnings of quantum computing and its surrounding disciplines remain largely as they were.  Still, let me discuss what has changed.

Between 2013 and 2020, the field of quantum computing made a striking transition, from a mostly academic pursuit to a major technological arms race.  The Chinese government, the US government, and the European Union have all pledged billions of dollars for quantum computing research.  Google, Microsoft, IBM, Amazon, Alibaba, Intel, and Honeywell also now all have well-funded groups tasked with building quantum computers, or providing quantum-computing-related software and services, or even just doing classical computing that’s “quantum-inspired.”  These giants are joined by dozens of startups focused entirely on quantum computing.

The new efforts vary greatly in caliber; some efforts seem rooted in visions of what quantum computers will be able to help with, and how soon, that I find to be wildly overoptimistic or even irresponsible.  But perhaps it’s always this way when a new technology moves from an intellectual aspiration to a commercial prospect.  Having joined the field around 1999, before there were any commercial efforts in quantum computing, I’ve found the change disorienting.

But while some of the new excitement is based on pure hype—on marketers now mixing some “quantum” into their word-salad of “blockchain,” “deep learning,” etc., with no particular understanding of any of the ingredients—there really have been some scientific advances in quantum computing since 2013, a fire underneath the smoke.

Surely the crowning achievement of quantum computing during this period was the achievement of “quantum supremacy,” which a team at Google announced in the fall of 2019.  For the first time, a programmable quantum computer was used to outperform any classical computer on earth, running any currently known algorithm.  Google’s device, called “Sycamore,” with 53 superconducting qubits cooled to a hundredth of a degree above absolute zero, solved a well-defined albeit probably useless sampling problem in about 3 minutes.  To compare, current state-of-the-art simulations on classical computers need a few days, even with hundreds of thousands of parallel processors.  Ah, but will a better classical simulation be possible?  That’s an open question in quantum complexity!  The discussion of that question draws on theoretical work that various colleagues and I did over the past decade.  That work in turn draws on my so-called PostBQP=PP theorem from 2004, explained in this book.

In the past seven years, there were also several breakthroughs in quantum computing theory—some of which resolved open problems mentioned in this book. 

In 2018, Ran Raz and Avishay Tal gave an oracle relative to which BQP (Bounded-Error Quantum Polynomial-Time) is not contained in PH (the Polynomial Hierarchy).  This solved one of the main open questions, since 1993, about where BQP fits in with classical complexity classes, at least in the black-box setting.  (What does that mean?  Read the book!)  Raz and Tal’s proof used a candidate problem that I had defined in 2009 and called “Forrelation.”

Also in 2018, Urmila Mahadev gave a protocol, based on cryptography, by which a polynomial-time quantum computer (i.e., a BQP machine) could always prove the results of its computation to a classical polynomial-time skeptic, purely by exchanging classical messages with the skeptic.  Following Urmila’s achievement, I was delighted to give her a $25 prize for solving the problem that I’d announced on my blog back in 2007.

Perhaps most spectacularly of all, in 2020, Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen proved that MIP*=RE.  Here MIP* means the class of problems solvable using multi-prover interactive proof systems with quantumly entangled provers (and classical polynomial-time verifiers), while RE means Recursively Enumerable: a class that includes not only all the computable problems, but even the infamous halting problem (!).  To say it more simply, entangled provers can convince a polynomial-time verifier that an arbitrary Turing machine halts.  Besides its intrinsic interest, a byproduct of this breakthrough was to answer a decades-old question in pure math, the so-called Connes Embedding Conjecture (by refuting the conjecture).  To my knowledge, the new result represents the first time that quantum computing has reached “all the way up the ladder of hardness” to touch uncomputable problems.  It’s also the first time that non-relativizing techniques, like the ones central to the study of interactive proofs, were ever used in computability theory.

In a different direction, the last seven years have witnessed an astonishing convergence between quantum information and quantum gravity—something that was just starting when Quantum Computing Since Democritus appeared in 2013, and that I mentioned as an exciting new direction.  Since then, the so-called “It from Qubit” collaboration has brought together quantum computing theorists with string theorists and former string theorists—experts in things like the black hole information problem—to develop a shared language.  One striking proposal that’s emerged from this is a fundamental role for quantum circuit complexity—that is, the smallest number of 1- and 2-qubit gates needed to prepare a given n-qubit state from the all-0 state—in the so-called AdS/CFT (Anti de Sitter / Conformal Field Theory) correspondence.  AdS/CFT is a duality between physical theories involving different numbers of spatial dimensions; for more than twenty years, it’s been a central testbed for ideas about quantum gravity.  But the duality is extremely nonlocal: a “simple” quantity in the AdS theory, like the volume of a wormhole, can correspond to an incredibly “complicated” quantity in the dual CFT.  The new proposal is that the CFT quantity might be not just complicated, but literally circuit complexity itself.  Fanciful as that sounds, the truth is that no one has come up with any other proposal that passes the same sanity checks.  A related new insight is that the nonlocal mapping between the AdS and CFT theories is not merely analogous to, but literally an example of, a quantum error-correcting code: the same mathematical objects that will be needed to build scalable quantum computers.

When Quantum Computing Since Democritus was first published, some people thought it went too far in elevating computer science, and computational complexity in particular, to fundamental roles in understanding the physical world.  But even I wasn’t audacious enough to posit connections like the ones above, which are now more-or-less mainstream in quantum gravity research.

I’m proud that I wrote Quantum Computing Since Democritus, but as the years go by, I find that I have no particular desire to revise it, or even reread it.  It seems far better for the book to stand as a record of what I knew and believed and cared about at a certain moment in time.

The intellectual quest that’s defined my life—the quest to wrap together computation, physics, math, and philosophy into some sort of coherent picture of the world—might never end.  But it does need to start somewhere.  I’m honored that you chose Quantum Computing Since Democritus as a place to start or continue your own quest.  I hope you enjoy it.

Scott Aaronson
Austin, Texas
June 2020

Quantum Computing Since Democritus now out in the US! 20% discount for Shtetl-Optimized readers

Saturday, April 27th, 2013

OK, this will be my last blog post hawking Quantum Computing Since Democritus, at least for a while.  But I do have four pieces of exciting news about the book that I want to share.

  1. Amazon is finally listing the print version of QCSD as available for shipment in North America, slightly ahead of schedule!  Amazon’s price is $35.27.
  2. Cambridge University Press has very generously offered readers of Shtetl-Optimized a 20% discount off their list price—meaning $31.99 instead of $39.99—if you click this link to order directly from them.  Note that CUP has a shipping charge of $6.50.  So ordering from CUP might either be slightly cheaper or slightly more expensive than ordering from Amazon, depending (for example) on whether you get free shipping from Amazon Prime.
  3. So far, there have been maybe 1000 orders and preorders for QCSD (not counting hundreds of Kindle sales).  The book has also spent a month as one of Amazon’s top few “Quantum Physics” sellers, with a fabulous average rating of 4.6 / 5 stars from 9 reviews (or 4.9 if we discount the pseudonymous rant by Joy Christian).  Thanks so much to everyone who ordered a copy; I hope you like it!  Alas, these sales figures also mean that QCSD still has a long way to go before it enters the rarefied echelon of—to pick a few top Amazon science sellers—Cosmos, A Brief History of TimeProof of Heaven (A Neurosurgeon’s Journey into the Afterlife), Turn On Your SUPER BRAIN, or The Lemon Book (Natural Recipes and Preparations).  So, if you believe that QCSD deserves to be with such timeless classics, then put your money where your mouth is and help make it happen!
  4. The most exciting news of all?  Luboš Motl is reading the free copy of QCSD that I sent him and blogging his reactions chapter-by-chapter!  So, if you’d like to learn about how mathematicians and computer scientists simply lack the brainpower to do physics—which is why we obsess over kindergarten trivialities like the Church-Turing Thesis or the Axiom of Choice, and why we insist idiotically that Nature use only the mathematical structures that our inferior minds can grasp—then check out Luboš’s posts about Chapters 1-3 or Chapters 4-6.  If, on the other hand, you want to see our diacritical critic pleasantly surprised by QCSD’s later chapters on cryptography, quantum mechanics, and quantum computing, then here’s the post for you.  Either way, be sure to scroll down to the comments, where I patiently defend the honor of theoretical computer science against Luboš’s hilarious ad hominem onslaughts.

Quantum Computing Since Democritus: The Buzz Intensifies

Thursday, March 21st, 2013

Update (March 22): The Kindle edition of Quantum Computing Since Democritus is now available, for the low price of $15.40!  (Not factorial.)  Click here to get it from amazon.com, or here to get it from amazon.co.uk.  And let me know how it looks (I haven’t seen it yet).  Another Update: Just saw the Kindle edition, and the figures and formulas came out great!  It’s a product I stand behind with pride.

In the meantime, I regret to say that the marketing for this book is getting crasser and more exploitative by the day.

lily-qcsd

lily-qcsd2


It seems like wherever I go these days, all anyone wants to talk about is Quantum Computing Since Democritus—the sprawling new book by Scott Aaronson, published by Cambridge University Press and available for order now.  Among leading figures in quantum information science—many of them well-known to Shtetl-Optimized readers—the book is garnering the sort of hyperbolic praise that would make Shakespeare or Tolstoy blush:

“I laughed, I cried, I fell off my chair – and that was just reading the chapter on Computational Complexity.  Aaronson is a tornado of intellectual activity: he rips our brains from their intellectual foundations; twists them through a tour of physics, mathematics, computer science, and philosophy; stuffs them full of facts and theorems; tickles them until they cry ‘Uncle’; and then drops them, quivering, back into our skulls.  Aaronson raises deep questions of how the physical universe is put together and why it is put together the way it is.  While we read his lucid explanations we can believe – at least while we hold the book in our hands – that we understand the answers, too.” —Seth Lloyd

“Scott Aaronson has written a beautiful and highly original synthesis of what we know about some of the most fundamental questions in science: What is information? What does it mean to compute? What is the nature of mind and of free will?” —Michael Nielsen

“Not since Richard Feynman’s Lectures on Physics has there been a set of lecture notes as brilliant and as entertaining.  Aaronson leads the reader on a wild romp through the most important intellectual achievements in computing and physics, weaving these seemingly disparate fields into a captivating narrative for our modern age of information.  Aaronson wildly runs through the fields of physics and computers, showing us how they are connected, how to understand our computational universe, and what questions exist on the borders of these fields that we still don’t understand.   This book is a poem disguised as a set of lecture notes.  The lectures are on computing and physics, complexity theory and mathematical logic and quantum physics.  The poem is made up of proofs, jokes, stories, and revelations, synthesizing the two towering fields of computer science and physics into a coherent tapestry of sheer intellectual awesomeness.” —Dave Bacon

After months of overhearing people saying things like the above—in the halls of MIT, the checkout line at Trader Joe’s, the bathroom, anywhere—I finally had to ask in annoyance: “is all this buzz justified?  I mean, I’m sure the book is as deep, hilarious, and worldview-changing as everyone says it is.  But, after all, it’s based off lecture notes that have long been available for free on the web.  And Aaronson, being the magnanimous, open-access-loving saint that he is, has no plans to remove the online notes, even though he could really use the royalties from book sales to feed his growing family.  Nor does Cambridge University Press object to his principled decision.”

“No, you don’t understand,” they told me.  “Word on the street has it that the book is extensively updated for 2013—that it’s packed with new discussions of things like algebrization, lattice-based cryptography, the QIP=PSPACE theorem, the ‘quantum time travel controversy,’ BosonSampling, black-hole firewalls, and even the Australian models episode.  They say it took years of painstaking work, by Aaronson and his student Alex Arkhipov, to get the notes into book form: fixing mistakes, clarifying difficult points, smoothing out rough edges, all while leaving intact the original’s inimitable humor.  I even heard Aaronson reveals he’s changed his mind about certain things since 2006.  How could you not want such a labor of love on your bookshelf?”

Exasperated, I finally exclaimed: “But the book isn’t even out yet in North America!  Amazon.com says it won’t ship until April 30.”

“Sure,” one gas-station attendant replied to me, “but the secret is, it’s available now from Amazon.co.uk.  Personally, I couldn’t wait a month, so I ordered it shipped to me from across the pond.  But if you’re a less hardcore quantum complexity theory fan, and you live in North America, you can also preorder the book from Amazon.com, and they’ll send it to you when it arrives.”

Much as the hype still grated, I had to admit that I’d run out of counterarguments, so I looked into ordering a copy for myself.